Under Construction:
Delphi 5 WebBroker Stuff

by Bob Swart

ver the past few months, we

have examined Delphi 5
InternetExpress, the extension of
WebBroker and MIDAS. And
although I can hardly get enough of
InternetExpress and XML, we must
not forget the WebBroker
technology itself, which was also
enhanced in Delphi 5. So let’s take a
closer look. And for those die-hard
InternetExpress fans: we’ll take our
first steps at creating custom
InternetExpress components (and
we’ll leave XML at home this time).

WebBroker

There are a number of changes in
the WebBroker components and
wizards. Most of them are bug fixes
or workarounds for existing prob-
lems, but some are quite handy.
We’ll examine a number of them
while implementing a new internet
application that | currently use on
my website. It's about banner
advertising: the ability to rotate
banners on a specific location,
measuring the number of impres-
sions as well as the click-through
rate (when someone actually clicks
on the banner and jumps to the
advertiser’'s website). This func-
tionality is implemented in a single
Delphi 5 WebBroker application,
with the measured results avail-
able using a bit of help from the
InternetExpress components (this
time truly without the need for a
runtime licence fee!).

Runtime Packages

One change to Web Modules which
has a lot of impact is the fact that
we can now use runtime packages
when building WebBroker ISAPI or
NSAPI DLLs. In previous versions
of Delphi, this was not possible
(and the result was often really big
DLLs). Now, we can compile these
ISAPI DLLs using runtime
packages, which makes them
much smaller, therefore easier to

30

distribute and update (of course,
we still need to distribute the pack-
ages as well, but at least these can
be reused by other applications on
the web server).

In order to facilitate this change,
anumber of things were taken from
the HTTPApp unit and moved to a
new unit called WebBroker. This
change affects all existing
WebBroker projects written in pre-
vious versions of Delphi as, from
now on, all WebBroker applica-
tions must have the WebBroker unit
in their uses clause. This unit holds
the definition of the global
WebBroker Application variable.
In order to ‘upgrade’ existing
WebBroker applications to Delphi
5, we must insert the WebBroker unit
into the uses clause of the project
file (and optionally remove the
HTTPApp unit).This should automati-
cally be the case with all
WebBroker applications that we
create with Delphi 5. | say should,
because unfortunately, this is not
the case.

The DB Web Application Wizard,
not updated since Delphi 4, does
not generate code that includes
the WebBroker unit. The Delphi IDE
probably detects that it uses an
Application object, without an
Application object in scope, so it
duly adds amissing unit... the Forms
unit. And yes, this project compiles
justfine. Anditeven runs, although
itdoesn’tdo much. Youwon’teven
get an error message, you just get
nothing. The obvious fix is to add
the WebBroker unit (since you don’t
need the Forms unityou can remove
the Forms reference altogether).

Talking about the DB Web Appli-
cation Wizard, it still only
generates a single table-based or
query-based DataSetTable-
Producer, so | still find ita bittaxing
to call this a true ‘wizard’ in what it
does. There’s another nuisance |
only recently stumbled upon. | find

The Delphi Magazine

it convenient to add a new project
in the Project Manager, instead of
starting a separate new project.
However, when you want to add a
new project from the Project Man-
ager, you'll find that the Business
tab (which contains the DB Web
Application Wizard icon) is not
available. And hence the DB Web
Application Wizard is not available
either. Obviously, | find this not a
big problem (since that wizard is
buggy to begin with), but | have a
feeling this was unintended (and
untested perhaps) as well.

Rotating Banners

Let’s skip the bugs for now (we’ll
encounter some more in a
moment), and start our bitmap
banner rotating web server appli-
cation: BoBanner. As | explained
last time, an ISAPI DLL is easy to
debug, while a CGI application is
easy to deploy (and update), so |
always create both an ISAPI DLL
project and a CGI EXE project and
let them share the same web
module unit. It works really well,
especially since we have a Project
Manager to hold both projects at
the same time.

Once we have both projects, we
can open up the web module unit.
The first thing that’s new is that a
web module is derived from a regu-
lar data module, and as a conse-
quence we also have the Visual
Data Module Designer available for
web modules. This is handy when
working with tables, but we won’t
be using any tables today. Never-
theless, the Visual Data Module
Designer is abig help, and | wonder
what enhancements will be made
to it in C++Builder 5 and Delphi 6
(one can always hope for even
more, right?).

Action Enhancements

Right click on the web module to
pop up the Action Editor. Right

Issue 53

procedure TWebModulel.WebModulelWebActionItemlAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var FileStream: TFileStream;
begin
try

FileStream := TFileStream.Create('d:\www\drbob42\gif\javahelp.gif"',

fmOpenRead OR fmShareDenyNone);

ry
FileStream.Position := 0

Response.ContentType := :1mage/gif';
Response.ContentStream := FileStream;

Response.SendResponse; // send header + Stream

finally
FileStream.Free
end
except
end
end;

0 Listing 1: Returning a
single bitmap banner.

click again to add two new web
action items. If you select one of
them, you’ll notice a new property
called Producer. Thiscan be used to
specify any PageProducer oOr
TableProducer that’s available on
the web module, and replaces the
code we used to write in the
OnAction event handler. So, an
OnAction event handler that does
the following:

Response.Content :=
PageProducer.Content;

actually does the same thing as
assigning MyPageProducer to the
Producer property of the
WebActionItem. The latter uses no
code, which may be convenient,
butalso removes the ability to seta
breakpoint in that line of code.
Also, since | usually produce more
than the output from a single Pro-
ducer, | find myself using the Pro-
ducer property very little. Butit can
be handy sometimes.

Non-HTML Producing

In previous articles on WebBroker
(or InternetExpress) I've mainly
concerned myself with the produc-
tion of HTML: dynamic web pages.
This time, however, the objective
is to produce a random rotating
bitmap banner which is displayed
on top of a static web page. And
that’s a bit different, since we can
no longer simply assign something
to the Response.Content string (a
binary bitmap may contain {0 char-
acters and so cannot be put in a
String, as this could inadvertently
signal the end of the PChar inside
the String).

January 2000

Whenever we need to return
something other than a simple
text/html, we first need to specify
the correct ContentType (which is
set to text/htm1 by default). In our
case, we need to set it to image/gif,
but there are numerous other
mime options available (including
audio or video streaming). After
we’ve set the correct content type,
so the browser knows how to inter-
pret the data that follows, it’s time
to send the binary content itself.
Not by using the Response.Content
string, but by streaming it out
using the ContentStream property
and the SendResponse method. If we
need to stream more binary stuff,
we need subsequent calls to the
SendStream method (which does
not send the header information
again).

In order to return an image/gif
bitmap banner stored in the file
located at d:\www\drbob42\gif\
javahelp.gif (accessible from the
web server, of course), we can
write the code in Listing 1.

We need to open the file using
the fmOpenRead OR fmShareDenyNone
options since we only need to read
it, and we don’t want to stop other

applications from accessing the
same file. Note that we need to
create our own instance of a
FileStream component, assign it to
the Response.ContentStream prop-
erty, send it to the client (using the
SendResponse method) and only
then can we free the FileStream
again.

The HTML fragment to call the
above script and produce the
dynamic bitmap banner is as
follows (without the line breaks):

SRC="http://www.drbob42.com/
cgi-bin/bobanner.exe"
BORDER=0

Note the BORDER=0 part, which will
come in handy in a moment, since
these bitmap banners are always
clickable, meaning that a hyperlink
is defined to take you elsewhere
when you click on it.

Rotating Banners

In order to show a random banner
from a list of banners, thereby
giving the illusion of ‘rotating’
banners (a different one for each
visitor), we simply need to prepare
a list of bitmap banner locations,
and make a call to the Random func-
tion to pick one. Here’s a tip: if you
put this in a CGIl executable, make
sure you call the Randomize func-
tion somewhere in your applica-
tion’s or unit’s initialization
section, otherwise you will always
return exactly the same bitmap
banner. The code can be seen in
Listing 2.

0 Listing 2: Returning a
random bitmap banner.

procedure TWebModulel.WebModulelWebActionItem2Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

const
MaxBanners = 4;

Banners: Arrany..MaxBanners-l] of String =
('d:\www\drbob42\gif\robohlpl.gif', 'd:\www\drbob42\gif\robohlp2.gif',

'd:\www\drbob42\gif\robohlp3.gif',

var FileStream: TFileStream;
begin
try
FileStream := TFileStream.Create(
Banners[Random(MaxBanners)1,
fmOpenRead OR fmShareDenyNone);

ry
FileStream.Position := 0;

Response.ContentType := 'image/gif';
Response.ContentStream := FileStream;

'd:\www\drbob42\gif\robohlp4.gif');

Response.SendResponse; // send header + Stream

finally
FileStream.Free
end
except
end
end;

The Delphi Magazine

31

Note that both Listings con-
tained an empty except...end
clause. An exception can be raised
if the bitmap banner files cannot be
found on the web server, in which
case the normal ‘document con-
tains no data’ exception is raised
(since we didn’t assign anything to
the Content variable itself).

Redirections, Anyone?

For each time we call a
SendResponse, we should also
update a logfile with the current
date/time and the specific bitmap
which is shown. This results in an
accurate list of impressions.
What's even more useful for adver-
tisers, however, is a list of people
clicking on the bitmap banner, also
called the click-through rate.
Usually, when people click on a
bitmap banner, they are sent to the
website of the advertiser (some-
times to a special entrance page,
sometimes directly to the home-
page or a specific product page).
This redirection can also be done
using web modules, as well as
logging the clicks themselves.

Assuming we create a hew
WebItemAction with the /redirect
PathInfo, we can write the single
line of code as in Listing 3 to handle
the redirection.

The HTML fragment in Listing 4
(on a single line) can be used for
the hyperlink as well as the
dynamic bitmap banner.

Again, | didn’t include code for
logging the click-through (nor did |
include this code when showing
the bitmap banner in the first
place), but that’'s usually pretty
trivial anyway, and is in the code
on this month’s disk.

InterBuilder Express?

Anyone remember IntraBuilder?
The hype with which it was
announced at a Borland Confer-
ence back in, | believe, 1996 was
only surpassed by the silence with
which it was killed off a year or so
ago. At that time, people could
freely exchange their IntraBuilder
box for their choice of JBuilder or
Delphi with WebBroker. I'd pick
the latter one, of course, although
WebBroker never did contain the
easy way of visually crafting HTML

32

web pages like IntraBuilder did
back in those days.

And now we have Internet-
Express as an additional feature
set of WebBroker. In the past few
months, we’ve examined the
multi-tier and XML extensions in
depth, but we haven’t actually
grasped the true power of the Web
Page Editor that comes with
InternetExpress. And that's a
shame, because it finally offers us
some (limited) WYSIWYG web
page design functionality. Let’s go
back to our bitmap banner adver-
tising example and see how we can
open up and generate reports of
the logfiles, but for the specific
advertisers and webmaster only, of
course. For that, we need some
kind of login dialog, and that's
where I'll be using InternetExpress,
without XML.

InternetExpress: No XML
Drop a MidasPageProducer compo-
nent on the web module. Don’t
even bother with an XMLBroker or
any of the Connection components,
because we are not using any
data-aware stuff anyway. We only
need the MidasPageProducer to be
able to start the Web Page Editor
(wouldn’t it be nice to have a
PageProducer with a more neutral
name than Midas...?). ’'m not even
using MIDAS and | certainly don’t
expect to be liable for MIDAS
runtime licence fees.

Anyway, once we have dropped
a MidasPageProducer on the web
module, right click on it to start the
Web Page Editor. Last time, we
started with a DataForm, but this
time we need a QueryForm to imple-
ment a login dialog. So, right click
on the upper-left pane of the Web
Page Editor and select New Compo-
nent (or click the Ins button) to get
the Add Web Component dialog and
select the QueryForm component.

A QueryForm can be used to fire
another action (typically from the
same web module), and that's
what the Action property is all
about. Unfortunately, I'd much
rather work with a specific
PathInfo property, since now |
need to fill in the exact entire
action (including the path of my
web server application itself,
which depends on the location on
my development/debug machine
and the deployment web server).
For now, | just specify:

http://192.168.91.201/cgi-bin/
bobanner.exe

as the Action property, which
points to my local development
machine. Note that | should also
specify the PathInfo here, so that
becomes something like:

http://192.168.91.201/cgi-bin/
bobanner.exe/admin

Which means we need to imple-
ment another WebItemAction to
implement the /admin pathinfo.
The dialog itself, built on top of the
QueryForm, should contain a listbox
of possible advertiser names and
an editbox with the password. We
should also have Login and Cancel
or Close buttons. Right click on the
QueryForm, and select Add New Com-
ponent again to add both a
QueryFieldGroup and the
QueryButtons. The QueryButtons by
default contain the Submit and
Reset buttons. We’ll get back to
those in a minute. First, make sure
the QueryFieldGroup (which is
currently empty) is positioned
higher than the QueryButtons. Now,
select and right click on the
QueryFieldGroup to see the list of
relevant QueryForm sub-
components, which is quite long,
and contains, among others, both

procedure TWebModulel.WebModulelWebActionItem3Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin

e

[0 Above: Listing 3

Response.SendRedirect(Request.QueryFields.Values['URL'])
nd;

[J Below: Listing 4

<A HREF="http://www.drbob42.com/cgi-bin/bobanner.exe/redirect?
URL=http://www.domain.com"> <IMG SRC="http://www.drbob42.com/cgi-bin/

bobanner.exe" BORDER=0>

The Delphi Magazine

Issue 53

a QuerySelectOptions and a
QueryPassword component. The
former can be used to selectfroma
predefined (or data-bound) list of
items, while the latter can be used
to allow the end-user to enter a
password without the characters
being readable at runtime (ie you
only get * characters).

QuerySelectOptions

Select the QuerySelectOptions com-
ponent, which is a powerful little
gem. The easiest way to use this
component is to click on the ellip-
sis next to the Items property and
enter a number of items (like five
email addresses that can be used
as login names). The HTML tab of the
Web Page Editor shows the corre-
sponding HTML which is being
generated, while the Browser tab
enables us to click on the
combobox to see the items we’'ve
just entered. And if you don’t like a
combobox, you can change the
DisplayRows property from-1to3to
get a listbox instead.

Another way to wuse a
QuerySelectOptions component is
to use the DataSet, FieldName,
ValuesField and ItemsField prop-
erties. The DataSet and FieldName
obviously connect to the dataset
and field whose value is to be set,
while the valuesField contains the
values we set (like a User ID), and
the ItemsField contains the values
we see in the browser (like the full
name or email address of the user).
Quite powerful and, even in its
data-aware edition, not dependent
on XML or any MIDAS technology
whatsoever (you can easily con-
nect to a local table, in fact, you
actually need areal DataSet and not
an XMLBroker component to con-
nect to in the first place). And the
best thing is we can actually see
and manipulate the data and the
web page at design-time. The Web
Page Editor uses the Internet
Explorer ActiveX control as its
internal browser, so this is a true
WYSIWYG interface.

Check, Double Check?

Apart from a QueryPassword and
QuerySelectOptions component,
there are many others available to
use withaQueryForm. These include

34

function TWebCheckbox.ControlContent(Options: TWebContentOptions): string;

var Attrs: string;
begin
AddAttributes(Attrs);

end;

00 Above: Listing 5

Result := Format('<INPUT TYPE=CHECKBOX %0:s>', [Attrsl);

(] Below: Listing 6

TQueryCheckbox = class(TWebCheckbox, IQueryField)

private
FText: string;
protected
function GetText: string;

procedure SetText(const Value: string);

public

class function IsQueryField: Boolean; override;

end;

a QueryText (single edit field),
QueryTextArea (memo field), Query-
RadioGroup (set of radio buttons)
and even QueryHiddenText (to
handle state information, for exam-
ple). One of the things I'm missing,
which is usually available when
building CGI Forms in HTML, is a
checkbox, or rather a Query-
Checkbox component. | have no idea
why it's not here, but | need one
right now. I'd like to have an option
called ‘Email Report’, which just
emails the results (hence the email
addresses as user name) instead of
producing an HTML report.

But how do we create a
QueryCheckbox component? And no,
| don’'t want to use a Query-
RadioGroup with the ‘Email Report’
and ‘Report Online’ options, nor do
| want a dropdown combobox with
these options. | just want to use a
single checkbox, unchecked by
default, which says ‘Email Report’.
That's it. And that’s also the cue for
another step deeper inside
InternetExpress, since it looks like
we need to write an Internet-
Express custom component.

InternetExpress Components
The best way to find out how
InternetExpress components are
built, is to take a look at the
InternetExpress Sample Compo-
nents package (which contains the
QueryPassword component, by the
way, so you need to install this
package if you need to recreate the
code for this month).

These components can be found
in the directory DEMOS\MIDAS\
INTERNETEXPRESS\INETXCUSTOM. It
appears that a lot of the
InternetExpress components are

The Delphi Magazine

not simply components in a VCL
hierarchy, but also contain (and
implement) several different inter-
faces, like IQueryField, which is
required for a component on a
QueryForm.

One of the most simple base
classes is the TWebTextInput com-
ponent, which we can use to derive
a simple TWebCheckBox component
from. There’s one core function,
called ControlContent, which
returns the HTML fragment for
that particular component. This is
the core method that we need to
override for all custom
InternetExpress components,
along with some other methods
and interface methods should
need arise. For now, let’s imple-
ment the ControlContent method
to return a CheckBox instead of a
simple edit textbox, see Listing 5.

This small method is almost
entirely copied from the
TWebTextInput component (I left
out some JavaScript event
handling code), where instead of
an <INPUT TYPE=TEXT %0:s> we spec-
ify a TYPE=CHECKBOX to get a
checkbox instead of an editbox. It
couldn’t be simpler, and frankly
I’'m amazed this componentisn’tin
Delphi 5 Enterprise in the first
place!

Apart from overriding the
ControlContent method, we need
to publish a few properties (which
are not published in the TWeb-
TextInput component, yet), see
Listing 7 for more details. Once
you’'ve added this component to a
Delphi 5 package, we can use the
TWebCheckbox component, but only
in regular DataForms. Not in
QueryForms, yet.

Issue 53

QueryCheckbox

The main reason | started with a
regular TWebCheckbox component,
while | needed a TQueryCheckbox
component, is that it’s fairly easy
toturna‘regular’ componentintoa
‘query’ component, once you know
how to do it. In fact, the only thing
to do is derive from the ‘regular’
class, combined with the
IQueryField interface class, and

implement the necessary
IQueryField interface methods, see
Listing 6.

The class function IsQueryField
is the most important. Class func-
tion means that it can be called on
the class type TQueryCheckbox itself,
without the need for an instance (it
also means that from within that
method we can’t get to an instance
or instance data, but that’s another
story). The class function
IsQueryField should return True.

Which leaves the GetText and
SetText methods, connected to the
FText private data placeholder. I'm
sure the implementation of these
one-liners won’t surprise you (List-
ing 8), and at thistime | can only tell
you that these methods are needed
for the 1QueryField interface, sowe
need to implement them no matter
what (we’ll get back to this topic at
some other time, promise!).

After implementing the three
methods for the TQueryCheckbox
component, we can add that com-
ponent to the package, and are

0 Listing 7

unit DrBob42X;
interface
uses
Classes, HTTPApp, WebComp, MidItems;

type
TWebCheckbox = class(TWebTextInput)
protected

function ControlContent(Options: TWebContentOptions):

string; override;
published
property DisplayWidth;
property ReadOnly;
property Caption;

<’ Editing ‘webModule1_MidazPageProducerl

0 Figure 1
el

ready to add a real - MidasPageFraducer Cuenys electOptions

) - QueryFormnl GuernPazswond
QueryCheckbox compo - QuenFieldGroup LuenCheckbox
nent to our QueryForm ‘.. QuenEuttonsT
on the MidasPage-
Producer.

The name of the
checkbox will be the

Browwser | HTML I

name of the variable
that’s passed to the
web server applica-
tion (with the value
‘on’ if checked, and
‘off” if not checked).

Quite useful, as you
can imagine, and now

=l
E-mail |drbob@chellonl -]
Password:l
E-mail Eeport? [T
Subirnit | Reset |
=

available for Delphi 5
InternetExpress users
(and readers of this column).

The full implementation of the
TWebCheckbox and TQueryCheckbox is
shown in Listing 7.

Apart from the default
WebActionItem (which shows a
fixed bitmap banner) and the
WebActionItem with Pathinfo set to
/banner (which shows a random
banner from a list of four) and
/redirect (which jumps to another
URL), we now need to implement
the PathInfo’s /1ogin (which shows
the above MidasPageProducer) and
/admin (which shows the result
when logging in).

Right click on the web module
and create two new WebItemActions
(onefor /1o0gin and one for /admin).
Select the /1ogin action. Now we
can use the Producer property:

uses
SysUtils;

{ TWebCheckbox }

var Attrs: string;
begin

end;
{ TQueryCheckbox }

AddAttributes(Attrs);
Result := Format('<INPUT TYPE=CHECKBOX %0:s>', [Attrs]);

assign it to MidasPageProducer.
When this action is ‘executed’, the
MidasPageProducer produces the
output forit. Like | said before, this
eliminates the need to write an
OnAction event handler for this
action. Ifan OnAction event handler
is present and the Producer prop-
erty is assigned, the Producer prop-
erty is used to assign the
Response.Content, followed by the
call to the OnAction event handler
(which will have a Response argu-
ment with a Content property
already filled in). So it’s not a case
of one-or-the-other, but actually
one after the other.

PageProducing
The /admin WebActionItemwill usea
regular PageProducer to produce its

function TWebCheckbox.ControlContent(
Options: TWebContentOptions): string;

class function TQueryCheckbox.IsQueryField: Boolean;

property CaptionAttributes; begin
property CaptionPosition; Result := True;
property TabIndex; end;
property Style; function TQueryCheckbox.GetText: string;
property Custom; begin
property StyleRule; Result := FText;
end; . end;
;8$$;{gheckbox = class(TWebCheckbox, IQueryField) procedure TQueryCheckbox.SetText(const Value: string);
. begin
FText: string; gText .= Value:
protected end: !

function GetText: string;
procedure SetText(const Value: string);
public
g]ass function IsQueryField: Boolean; override;
end;
procedure Register;
implementation

January 2000

{ Register procedure }
procedure Register;
begin

e
end.

The Delphi Magazine

RegisterWebComponents ([TWebCheckBox, TQueryCheckbox1);
nd;

35

dynamic HTML. And this compo-
nent, together with its cousin
DataSetPageProducer, has been
extended with an additional prop-
erty as well: the StripParamQuotes
property. This property is a bless-
ing for those of us that used HTML
editors like FrontPage (instead of
the more user-friendly Notepad,
which is my first choice). As you
may remember, the PageProducer
components make use of special
HTML {-tags in their HTMLDoc or
HTMLFile specified property. And
these #-tags can also contain spe-
cial parameters, in the form of: TAG

don’t recognise these parameters,
and will embed them in quotation
marks, which the OnHTMLTag event
of the PageProducers does not like.
As of Delphi 5, we can set Strip-
ParamQuotes to True to indicate that
the PageProducer should remove
the quotes around the parameters.
So, from now on it's safe to use
FrontPage again, although it still
produces almost unreadable
HTML...

Obviously, we can connect the
/admin PathInfo to the
PageProducer that produces the
HTML report.

Note that the AddLogEntry and
LogEntries methods use acommon
logfile. More important, is the fact
that AddLogEntry only ‘appends’ to
this logfile, so you have to be sure
that an empty logfile already exists
(to append to), otherwise you may
need to perform a ‘rewrite’ the first
time (when the appends fails).
Since the rewrite is only needed for
a new logfile, like a monthly edi-
tion, I've left it out of the listing.

The final banner-showing, redi-
rection and administration
WebBroker app is operational on

Param=Value. Some web editors The final

code, with the

my website at www. drbob42.com
(do take a look!). With a little help

AddLogEntry and LogEntries sup- from InternetExpress as
. i in Listi ‘ ++’
0 Listing 8 port methods, isshownin Listing 8. WebBroker++’,
unit WebMod; begin
interface try
uses FileStream := TFileStream.Create(

Windows, Messages, SysUtils, Classes, HTTPApp,
MidItems, QueryComps, CompProd, Pagltems, MidProd,
DrBob42X; // custom TWebCheckBox, TQueryCheckBox components

type
TWebModulel = class(TWebModule)
MidasPageProducerl: TMidasPageProducer;
QueryForml: TQueryForm;
QueryButtonsl: TQueryButtons;
QueryFieldGroupl: TQueryFieldGroup;
QuerySelectOptions: TQuerySelectOptions;
QueryPassword: TQueryPassword;
QueryCheckbox: TQueryCheckbox;
PageProducerl: TPageProducer;
procedure WebModulelWebActionItemlAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse;
var Handled: Boolean);
procedure WebModulelWebActionItem2Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse;
var Handled: Boolean);
procedure WebModulelWebActionItem3Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse;
var Handled: Boolean);
procedure PageProducerlHTMLTag(Sender: TObject; Tag:
TTag; const TagString: String; TagParams: TStrings;
var ReplaceText: String);
private
procedure AddLogEntry(Message: String);
function LogEntries: String;
public
end;

var
WebModulel: TWebModulel;

implementation
{$R *.DFM}
const
LogFile = 'c:\logfile.txt"';
procedure TWebModulel.AddLogEntry(Message: String);
var f: System.Text;
begin
System.Assign(f,LogFile);
Append(f);
// start with empty file, in order to be able to append
writeln(f,Message);
Close(f)
end;

function TWebModulel.LogEntries: String;
var
f: System.Text;
Str: String;
begin
Result := '<PRE>';
System.Assign(f,LogFile);
Reset(f);
while not eof(f) do begin
readIn(f,Str);
Result := Result + Str
end;
Close(f);
Result := Result + '</PRE>'
end;

procedure TWebModulel.WebModulelWebActionItemlAction(Sender:
TObject; Request: TWebRequest; Response: TWebResponse;
var Handled: Boolean);

var FileStream: TFileStream;

36 The Delphi Magazine

'd:\www\drbob42\gif\javahelp.gif',
fmOpenRead OR fmShareDenyNone);
try
FileStream.Position := 0;
Response.ContentType := 'image/gif';
Response.ContentStream := FileStream;
Response.SendResponse; // send header + Stream
AddLogEntry('d:\www\drbob42\gif\javahelp.gif shown')
finally
FileStream.Free
end
except
end
end;

procedure TWebModulel.WebModulelWebActionItem2Action(Sender:
TObject; Request: TWebRequest; Response: TWebResponse;
var Handled: Boolean);
const
MaxBanners = 4;
Banners: Array[0..MaxBanners-1]1 of String =
('d:\www\drbob42\gif\robohlpl.gif"',
'd:\www\drbob42\gif\robohlp2.gif",
'd:\www\drbob42\gif\robohlp3.gif',
'd:\www\drbob42\gif\robohlp4.gif');
var
FileStream: TFileStream;
Banner: Integer;
begin
try
Banner := Random(MaxBanners);
FileStream := TFileStream.Create(
Banners[Banner], fmOpenRead OR fmShareDenyNone);

try
FileStream.Position := 0;
Response.ContentType := 'image/gif';
Response.ContentStream := FileStream;

Response.SendResponse; // send header + Stream
AddLogEntry(Banners[Banner]+' shown (random)')
finally
FileStream.Free
end
except
end
end;

procedure TWebModulel.WebModulelWebActionItem3Action(Sender:
TObject; Request: TWebRequest; Response: TWebResponse;
var Handled: Boolean);

var URL: String;

begin
URL := Request.QueryFields.Values['URL'];
Response.SendRedirect(URL);
ﬁddLogEntry('Redirection to '+URL)

end;

procedure TWebModulel.PageProducerlHTMLTag(Sender: TObject;
Tag: TTag; const TagString: String; TagParams: TStrings;
var ReplaceText: String);
begin
if TagString = 'REPORT' then
ReplaceText := LogEntries
end;
initialization
Randomize;
end.

Issue 53

I Editing 'WebM odule1_Actions

A+ @

i ame | Fathlnfo | Enabled | Default| Froducer |
Wiehdctionlkem1 True *

Wiehdchionlkem? sbanner True

Wiehdctionlkem3 dedrect True

Wiehdctionlkemsd Aogin True

WebdctionlkemS dadmin True

00 Above: Figure 2

I Editing 'WebM odule1_Actions

[Below: Figure 3

K+ *

i ame | Fathlnfo | Enabled | Default| Producer |
Wwiebdctionltern True #

Wwiehdchionlbem? sbanmer True

Wiebdctionltern3 fedirect True

Wehdctionlbemd foain True tidazFageProducer
"WebdctionlternS Jadrmir True PageProducer

Final Buggy

A final new bug that | found in the
Delphi 5 WebBroker Technology is
related to the WebDispatcher com-
ponent. This is the component that
you need to turn a regular data
module into a web module (one

38

that can Dispatch WebItemActions).
Only one is allowed per data
module, which is why we get an
error message if we try to drop one
on aweb module. Unfortunately, in
Delphi 5 you can drop more than
one WebDispatcher componenton a

The Delphi Magazine

single data module, resulting in
undesired behaviour. Of course,
nobody should ever try to add a
second WebDispatcher in the first
place, but you can’t deny it’s a bug
either...

Next Time

Next time in the one and only real
The Delphi Magazine, we examine
Delphi 5 CORBA stuff. At the time
Delphi 5 shipped, there seemed to
be little new CORBA stuff included.
This may still be the case, but then
again, maybe not. All the more
reason to stay tuned... until next
month.

Bob Swart (aka Dr.Bob, visit
www.drbob42.com) is an IT
Consultant for TAS Advanced
Technologies and a freelance
technical author.

Issue 53

	WebBroker
	Runtime Packages
	Rotating Banners
	Action Enhancements
	Non-HTML Producing
	Rotating Banners
	Redirections, Anyone?
	InterBuilder Express?
	InternetExpress: No XML
	QuerySelectOptions
	Check, Double Check?
	InternetExpress Components
	QueryCheckbox
	Final Buggy
	Next Time

